Newborn Screening for SCID and T Cell Lymphopenia

Jennifer Puck, MD

Jennifer.Puck@ucsf.edu

Department of Pediatrics
University of California San Francisco
and Benioff Children’s Hospital
San Francisco, California
Screening Basics

1. Applied to whole population

2. **Not diagnostic.** Identifies a small subpopulation for further testing.

3. Screening tests for rare disorders
 - Inexpensive, high throughput, sensitive.
 - Further testing required to establish diagnosis.
 - Specificity determines the workload for the follow-up testing.

4. Challenges
 - NICU population has higher false positives.
 - Differential diagnosis—workup algorithm.
 - Time to resolution: Diagnose true positives, rule out false positives—minimize “Patients in Waiting.”
 - Clinical significance (“Now that we know the diagnosis, what does it mean for my child?”)
Why Screen Populations for Immune System Disorders?

• Diagnose & treat serious illness early -- improve outcomes.
• Improve public health FOR ALL.
• Learn incidence and spectrum of inherited immune disorders.
• Find new disease genes and mechanisms.
• Use new knowledge to develop new drugs and treatments for rare and more common diseases.
TREC Screening **Primary** Target: SCID

“Classical” SCID

- Failure to thrive, thrush
- Recurrent, severe, & opportunistic infections
- High mortality by age 1
- Absent or low T cells
- B cells absent or non-functional
- Survival requires bone marrow transplant, or enzyme or gene therapy

Improved survival with diagnosis at birth (affected relative)
New Definitions for “Typical” and “Leaky” SCID Based on Lab Criteria

- **Typical SCID**: Absent or impaired T cell production; no functional B cells.

- Fewer than 300/uL autologous T cells; if more T cells are present they may be of maternal origin.

- Absent or very low naïve T cells, poor diversity.

- Abnormal function: less than 10% of lower limit of normal proliferation to PHA.

- Most often with pathogenic mutation(s) in known SCID gene.

- **Leaky SCID**: 300-1500 T cells/uL, functional impairment, few naïve cells, oligoclonality, no maternal engraftment, most often with hypomorphomorphic mutation(s) in known SCID gene.
Thymus produces a diverse T cell repertoire

- Excised DNA forms **T Cell Receptor Excision Circles (TRECs)** as a byproduct.
- TRECs are stable and can be detected by PCR.
- Newborns have the most TRECs; TRECs are diluted as T cells undergo many divisions in the periphery.

Vα Vδ Rec Dδ Jδ Cδ ΨJα Jα Cα

TCRA locus

TCRD locus

sjTREC

70% of αβT cells make this

PCR across joint
DNA amplification failure; new sample is needed.
SCID Actual Guthrie Card

Copy Number per Punch (~3ul)

Sample Number

○ TRECs
× Actin
SCID Newborn Screening, May 2015

- Screening by 2012
- Screening 2013-2015
- Implementation awards, DHHS-APHL
- Approved, not funded 2015
- Not screening

29 states plus DC, Navajo Nation, >75% of births
Initial TREC assay, copies/uL of blood

TREC >22

Normal

TREC ≤22

Repeat TREC with β-Actin

TREC >22

β-Actin OK

Positive / Abnormal

β-Actin bad

DAF

β-Actin OK

Regular

NICU

Incomplete

β-Actin bad

DAF

Normal

TREC >22

Low TREC x2

Normal

TREC ≤22

Repeat Heel Stick

DAF or Incomplete

T lymphopenia: <1,500 T cells or absent naïve CD4/CD45RA T cells – Refer to Immunodeficiency Center

Normal: ≥1,500 CD3 T cells with naïve cells present

CBC & lymphocyte subsets are run at one contract Lab & interpreted by NBS Program Immunology Consultants
T lymphopenia: <1,500 T cells or absent naïve CD4/CD45RA T cells – Refer to Immunodeficiency Center

Normal: ≥1,500 CD3 T cells with naïve cells present

Initial TREC assay, copies/uL of blood

TREC >22

TREC ≤22

Repeat TREC with β-Actin

TREC >22

β-Actin OK

β-Actin bad

TREC ≤5

β-Actin OK

β-Actin bad

TREC 6-22

β-Actin bad

Positive / Abnormal

CBC & lymphocyte subsets are run at one contract Lab & interpreted by NBS Program Immunology Consultants
<table>
<thead>
<tr>
<th>Test</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>WBC</td>
<td>3.0 ± 1.0</td>
</tr>
<tr>
<td>RBC</td>
<td>2.83 ± 0.8</td>
</tr>
<tr>
<td>HGB</td>
<td>9.7 ± 1.5</td>
</tr>
<tr>
<td>HCT</td>
<td>28.6 ± 5.0</td>
</tr>
<tr>
<td>MCV</td>
<td>101.0 ± 20.0</td>
</tr>
<tr>
<td>MCH</td>
<td>34.3 ± 5.0</td>
</tr>
<tr>
<td>MCHC</td>
<td>34.0 ± 5.0</td>
</tr>
<tr>
<td>PLT</td>
<td>592 ± 100</td>
</tr>
<tr>
<td>MPV</td>
<td>7.9 ± 2.5</td>
</tr>
<tr>
<td>RDW</td>
<td>14.9 ± 2.5</td>
</tr>
<tr>
<td>Absolute Neutrophils</td>
<td>1680 ± 1000</td>
</tr>
<tr>
<td>Absolute Band Neutrophils</td>
<td>0 ± 500</td>
</tr>
<tr>
<td>Absolute Metamyelocytes</td>
<td>0 ± 0</td>
</tr>
<tr>
<td>Absolute Myelocytes</td>
<td>0 ± 0</td>
</tr>
<tr>
<td>Absolute Promyelocytes</td>
<td>0 ± 0</td>
</tr>
<tr>
<td>Absolute Lymphocytes</td>
<td>630 ± 2500</td>
</tr>
<tr>
<td>CD3 T-Cells, Absolute</td>
<td><20 ± 10</td>
</tr>
<tr>
<td>CD3 T-Cells, Percent</td>
<td><1 ± 0.1</td>
</tr>
<tr>
<td>CD4 T-Helper, Absolute</td>
<td><20 ± 10</td>
</tr>
<tr>
<td>CD4 T-Helper, Percent</td>
<td><1 ± 0.1</td>
</tr>
<tr>
<td>CD8 T-Cytotoxic, Absolute</td>
<td><20 ± 10</td>
</tr>
<tr>
<td>CD8 T-Cytotoxic, Percent</td>
<td><1 ± 0.1</td>
</tr>
<tr>
<td>CD19 B-Cells, Absolute</td>
<td>328 ± 52</td>
</tr>
<tr>
<td>CD19 B-Cells, Percent</td>
<td>12 ± 6</td>
</tr>
<tr>
<td>CD16/56 NK-Cell, Absolute</td>
<td>132 ± 17</td>
</tr>
<tr>
<td>CD16/56 NK-Cell, Percent</td>
<td>21 ± 4</td>
</tr>
<tr>
<td>CD3/CD4/CD45RA, Absolute</td>
<td><20 ± 10</td>
</tr>
<tr>
<td>CD3/CD4/CD45RA, Percent</td>
<td><1 ± 0.1</td>
</tr>
<tr>
<td>CD3/CD8/CD45RA, Absolute</td>
<td><20 ± 10</td>
</tr>
<tr>
<td>CD3/CD8/CD45RA, Percent</td>
<td><1 ± 0.1</td>
</tr>
</tbody>
</table>
4 Years of California SCID Newborn Screening (2010-2014)

1,980,133 infants screened

109/255 had <1500 T cells/μL (43%)

1/55,000 SCID (Typical and Leaky)

1/180,000 idiopathic TCL

Typical SCID 12%

Syndrome 13%

Secondary 5%

Preterm 6%

Leaky SCID 3%

Idiopathic TCL/Variant SCID 4%

Normal T cells by flow 57%

1,980,133 infants screened

109/255 had <1500 T cells/μL (43%)

1/55,000 SCID (Typical and Leaky)

1/180,000 idiopathic TCL
Genotypes of Typical and Leaky SCID

Reports from Transplant Centers, no Screening
Duke University, European centers (estimates)

- IL2RG 50%
- RAG1 1%
- ADA 14%
- IL7R 10%
- JAK3 7%
- DCLRE1C 5%
- RMRP 1%
- TTC7A 1%
- Unknown 3%

Overall Survival ~74% or lower

California, with TREC Screening
4 years, ~2 million infants

- IL2RG 28%
- RAG1 18%
- ADA 12%
- IL7R 15%
- RMRP 3%
- RAG2 6%
- JAK3 6%
- Unknown 12%

Overall Survival 95%
T Cell Number and Diversity: Vβ TCR Spectratyping in a SCID patient

At diagnosis: few T cells, mono- or oligoclonal peaks

1 yr post-HCT: Normal pattern with many peaks, normal size distribution

3 mo post-HCT
PIDTC: Active infection, age at HCT affect 5 year survival in *Typical SCID*

Comparison of all groups to >3.5m with active infection are significant. Comparison of >3.5m no infection or >3.5m infection resolved to <3.5m are NS.

4 Years of California SCID Newborn Screening (2010-2014)

1,980,133 infants screened

109/255 had <1500 T cells/uL (43%)

1/55,000 SCID (Typical and Leaky)

1/180,000 idiopathic TCL

Normal T cells by flow 57%

Typical SCID 12%

Syndrome 13%

Secondary 5%

Preterm 6%

Leaky SCID 3%

Idiopathic TCL/Variant SCID 4%

13% Syndrome

5% Secondary

6% Preterm

57% Normal T cells by flow

12% Typical SCID

4% Idiopathic TCL/Variant SCID
Known Syndromes with Variable T Cell Defects (can be profound)

- DiGeorge syndrome
- Trisomy 21
- Ataxia telangiectasia
- Nijmegen breakage syndrome
- CHARGE syndrome
- Cartilage hair hypoplasia
- Jacobsen syndrome
- RAC2 deficiency, dominant interfering mutation
- DOCK8 deficiency
- CLOVES syndrome
- Fryns syndrome (diaphragmatic hernia, anomalies)

Others…
Secondary T Lymphopenia

- Congenital heart disease (heart surgery with thymectomy)
- Gastroschisis, gastrointestinal atresia
- Vascular leakage, chylothorax, third spacing
- Neonatal leukemia
- Extreme prematurity
- Maternal immunosuppressive medication
- *Prenatal HIV infection (hypothesized, not yet found)*

 T cells normalize upon resolution of the primary pathogenic process
Preterm Low Birthweight Infants with Low TREC and T Lymphopenia

CD3 T cells /uL vs Age in weeks

Threshold for follow-up

BW 300g
BW 490g
BW 560g
BW 445g
BW 700g
BW 557g
Idiopathic T Lymphopenia (Variant SCID)

- Persistent low but not absent T cells and TREC, low naïve CD45RA T cells, no maternal engraftment.
- No known SCID gene mutation.
- Impaired T cell and/or antibody responses.
- When an etiology is found, the case is moved to the appropriate category.
Opportunities to Learn Population Based Aspects of T cell Immune Deficiency

- SCID, 1/54,000 births
- All T lymphopenia <1500/uL 1/23,000 births
- DiGeorge, 22q11.2 deletion
 - Overall incidence ~1/5,000 births (literature).
 - Broad spectrum of phenotypes, including variable T cell immunodeficiency.
 - California cases with <1,500 T cells/uL represent 5% of all cases
Following Infants with Low Lymphocytes

FILL Project

- **Aim**: explore spectrum of disorders
 - Enroll infants with T cell lymphopenia early in life of any known/unknown cause
 - Collect data at 3 time points: 3 mo, 6-9 mo, 12-18 mo
 - Form basis for future studies
 - Hope to enroll 200 cases in first year

- **Support**: CIS, USIDNET, Modell Foundation
- **Data fields** programmed into USIDNET Registry
- **Patient consent** online or through USIDNET Centers
- **Rewards** for physicians who enter data
TREC Screen Does Not Pick Up All CID or PID

- Defect after TCR recombination in thymus; T cell number or diversity not reduced
 - CD40L deficiency, Hyper-IgM syndrome
 - MHC II deficiency
 - ZAP70 deficiency
- SCID gene defect sufficiently leaky to allow TRECs to be normal (late onset ADA deficiency)
- Syndrome with variable T cell deficiency with enough T cells to have TRECs above cutoff
- PID not involving T cells
 - XLA, CGD, etc.
- PID not evident at birth
 - CVID
Conclusions

1. SCID is the most serious treatable genetic immune deficiency, affecting around 1/50,000 births.

2. Early diagnosis permits optimal treatment and outcomes.

3. Population based newborn screening with TRECds identifies SCID, and also non-SCID conditions with low T cells, offering clinical benefit and opportunities to define the spectrum of disorders.

4. A high index of suspicion is still needed for primary immune defects not picked up by TREC screening.
Thanks to Many Collaborators

UCSF
Mort Cowan, Christopher Dvorak, Mica Muskat

California Dept. of Pub Health
Bob Currier and colleagues

LA Children’s Hospital
Joe Church, Neena Kapoor

Stanford
Sean McGhee, Matt Porteus

UCLA
Don Kohn, E. R. Stiehm, Ted Moore

Support from:
NIH
NIAID RO1s, and RO3
USIDNet U24 US Immuno-deficiency Network
PIDTC U54 Primary Immune Deficiency Treatment Consortium
NCATS: UCSF CTSI

IDF Immune Deficiency Foundation
JMF Jeffrey Modell Foundation
CDC Center for Disease Control and Prevention
DHHS Maternal & Child Health Bureau, NBSTRN